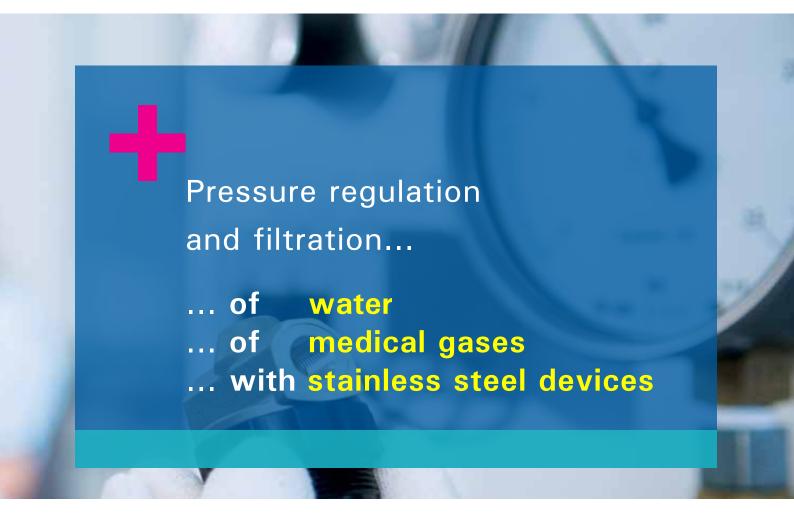


Medical technology Regulation inspiration for you.


KNOCKS Fluid-Technik — as a technologically leading manufacturer of filter and regulator technology, we offer you competent solutions in the area of medical technology.

Welcome to KNOCKS.

WE BUILD THE FUTURE.

Do you need smart problem solutions? We handle it! As leading manufacturer for pressure control and filter technology, we have been giving impulses to the sector for almost 50 years, 25 years with experience in design solutions development for the medical technology sector. We supply expert answers to your questions for all pressure control and filtration areas - convenient know-how advantage and fair conditions included.

TECHNOLOGY THAT REGULATES IT CLEANLY.

Pressure regulators from KNOCKS have been specially developed for water applications in the medical and food sectors. They provide a clean solution for dialysis units, dental technology and osmosis water systems – anywhere top standards are placed on regulator performance. All the materials we use are physiologically harmless and biocompatible.

		MODEL	APPLICATIONS	FEATURES
		DR.021-01 PRESSURE REGULATOR G 1/4	Water circulation systems Dental technology	Natural brass Also available in G 1/8 Drinking water compliant in accorcance with UBA certification
		DR.032 PRESSURE REGULATOR WITH HOSE CONNECTORS Ø 6	Water circulation systems Dental technology Dialysis units	PPSU-materials Hot water resistant to 95°C Biocompatible Drinking water compatible
REGULATION		DR.021-00 VC PRESSURE REGULATOR G 1/8	Water circulation systems Dental technology	Chrome-plated Also available in G 1/4
PRESSURE REGULATION		GRE.01 TW PRESSURE REGULATOR G 1/4	Water circulation systems Dental technology	Drinking water compliant in accorcance with UBA certification
		GCE.01 W FILTER REGULATOR G 1/4	Water circulation systems Dental technology	5μm, 40μm und 100μm filtration
	-	DR.050 S PRESSURE REGULATOR WITH HOSE CONNECTORS Ø 6	Water circulation systems Dental technology Dialysis units Osmosis water systems	PPSU-materials Hot water resistant to 95°C Biocompatible Drinking water compatible Gauge connection G 1/8

	MODEL	APPLICATIONS	FEATURES		
MEDICAL OXYGEN	DR.23 0 PRESSURE REGULATOR G 1/2	Pressure regulation in: Central gas supply units/systems Medical devices Oxygen compressors	Pursuant to DIN EN ISO 10524-4		
	DR.33 0 PRESSURE REGULATOR G 1/2	Pressure regulation in: Central gas supply units/systems Medical devices Oxygen compressors	Pursuant to DIN EN ISO 10524-4		
	DR.55 0 PRESSURE REGULATOR G 1	Pressure regulation in: Central gas supply units/systems Medical devices Oxygen compressors	Pursuant to DIN EN ISO 10524-4		
	DR.01 m0 PRESSURE REGULATOR G 1/4	Pressure regulation in: Central gas supply units/systems Medical devices Oxygen compressors	Also available in G 1/8 and with brass spring cage Nach DIN EN ISO 10524-4		
	DR.01 m0 PRESSURE REGULATOR G 1/4	Pressure regulation in: Central gas supply units/systems Medical devices Oxygen compressors	Also available in G 1/8 Pursuant to DIN EN ISO 10524-4		

	MODEL	APPLICATIONS	FEATURES
	DR.036-00 m0 CARTRIDGE PRESSURE REGULATOR WITH CONNECTION BLOCK G 1/8	Respiration devices Anaesthesia systems Gas control und monitor units	Biocompatible FDA compatible Compact design
EN	KDR.00 m0 S PRESSURE REGULATOR G 1/8	Respiration devices Anaesthesia systems Gas control und monitor units	Biocompatible Compact design
MEDICAL OXYGEN	KDR.FL m0 PRESSURE REGULATOR FLANGE MOUNTING	Respiration devices Anaesthesia systems Gas control und monitor units	Biocompatible High control precision Compact design
	DR.036 m0 CARTRIDGE PRESSURE REGULATOR	Respiration devices Anaesthesia systems Gas control und monitor units	Biokompatibel FDA compatible Compact design
	DR.036 mO Plunger Action CARTRIDGE PRESSURE REGULATOR WITH CONNECTION BLOCK G 1/8	Respiration devices Anaesthesia systems Gas control und monitor units	Biokompatibel FDA compatible Suitable for automatic control

		MODEL	APPLICATIONS	FEATURES	
FILTER AND FILTER UNITS	111 10	F.00 MO HA4 FILTER G 1/8	Suitable for compressed air and medical gases	Filtration (Particle size until 5µm) Semi automatic drain Zinc diecast body Purity classes (ISO 8573-1)	
		GF.01 HA4 FILTER G 1/4	Suitable for compressed air and medical gases	Filtration (Particle size until 5µm) Semi automatic drain Grivory body Purity classes (ISO 8573-1)	
		KFIL-014 m0 FILTER G 1/4	Suitable for compressed air and medical gases	Filtration (Particle size until 5µm) Semi automatic drain Grivory body Purity classes (ISO 8573-1)	
		KFIL-014 AMC FILTER G 1/4	Suitable for compressed air and medical gases	Filtration (Particle size until 5µm) Automatic drain Grivory body Purity classes (ISO 8573-1)	
		KSUS-014 PRESSURE FILTER UNIT FINE FILTER/ACTIVATED CARBON FILTER G 1/4	Suitable for compressed air and medical gases	Filtration (Fine filter: Particle size until 0,01µm; Activated carbon filter) Grivory body Purity classes (ISO 8573-1)	
		KSUS-014 WARTUNGSEINHEIT 4-tlg. MULTISTAGE FILTER UNIT G 1/4	Suitable for compressed air and medical gases	Filtration (Filter 8µm - Prefilter 0,3µm - Finefilter 0,01µm - Activated carbon filter) Purity classes (ISO 8573-1)	

STAINLESS STEEL - PARTICULARLY RESISTANT

KNOCKS' stainless steel products are particularly suitable for use in aggressive atmospheres. They are more resistant than standard devices and allows thus the pressure control of special and aggressive media.

		MODEL	APPLICATIONS	FEATURES		
STAINLESS STEEL		XR.M5 PRESSURE REGULATOR M5	Suitable for compressed air and medical gases and aggressive media	Also available in M7 and Oil and grease free		
	Ĭ	XXFD.01 FILTER REGULATOR G 1/4	Suitable for compressed air and medical gases and aggressive media	Oil and grease free FPM seals Manual drain		
		XXDR.01 PRESSURE REGULATOR G 1/4	Suitable for compressed air and medical gases and aggressive media	Oil and grease free FPM seals		
		XXFDR.07 PRECISION REGULATOR G 1/4	Suitable for compressed air and medical gases and aggressive media	High exhaust capacity FPM seals Controlled air consumption		

Precision pressure regulators

KNOCKS

www.knocks.de

As precise as necessary — anytime, anywhere.

Our precision pressure regulators offer high performance and absolute flexibility with guaranteed reliability over a range of series with their respective material concepts. They enable various flow volumes, pressure ranges and temperature stability levels.

Manufacturing competence for precision pressure regulators

INDUSTRY OVERVIEW

- Industrial pneumatics
- Industrial automation
- Automotive industry
- Textile industry
- Paper industry
- Food and beverage industry
- Railway technology
- Measurement technology
- Medical technology
- Woodworking machines
- Handling

When you need just the right one

WHAT DISTINGUISHES A PRECISION PRESSURE REGULATOR?

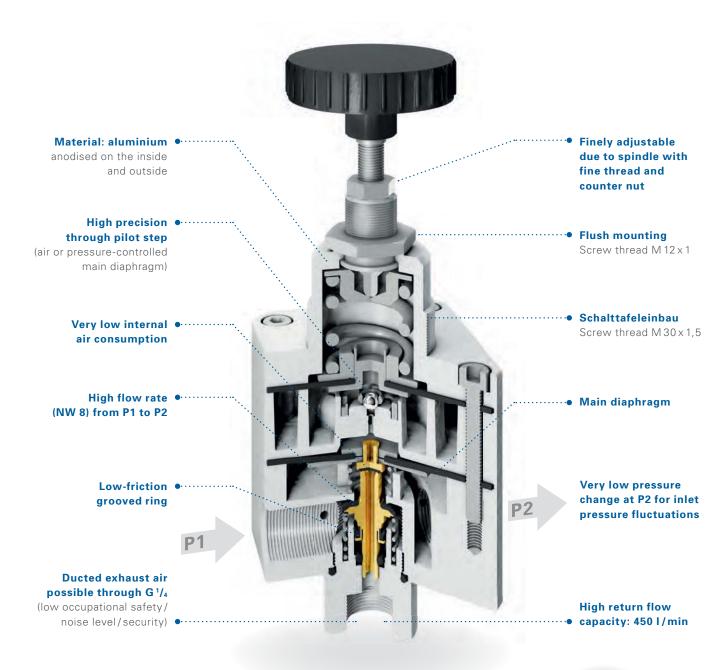
Precision pressure regulators are used for highly accurate pressure control of the outlet pressure, regardless of the preliminary pressure and the flow rate.

Good regulation and flow characteristics (horizontal progression) are achieved by maintaining a very large ratio of diaphragms to the valve face. In this system, the diaphragm control is often assumed by an integrated pilot step (pilot regulator).

EXAMPLES OF USE

- Hoists/balancers
- 3-D measuring machines
- Pantographs
- Pneumatic presses
- Cylinder control units
- · Roller control units
- · Web tension controllers
- Paper web tensioners
- Static applications
- Pressurisation of liquids
- Contact pressure
- Adhesive dispensing
- Laser cutting
- Blast air/purge air

The decision-maker


for our precision pressure regulators

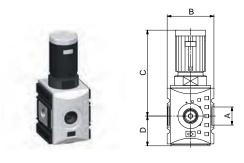
Туре	Pilot regulator construction	Internal air consumption (P2 = 6 bar)	Regulator accuracy	Nominal width valve face	Nominal width return flow	Material	Features	
Futura series								
KPRG-114 KPRG-138	no	2,6 I/min	50 mbar (good)	8 mm	2 mm	Grivory	Modularly interlocking	, L
KPRG-238 KPRG-212	no	2,6 I/min	50 mbar (good)	12 mm	2 mm	GV 6H	in the Futura series	onnde
KPRB-114 KPRB-138	no	2,6 I/min	50 mbar (good)	8 mm	2 mm	Grivory	Modularly interlocking	"Cost-effective all-rounder"
KPRB-238 KPRB-212	no	2,6 l/min	50 mbar (good)	12 mm	2 mm	GV 6H	in the Futura series	fective
Multi-Fix series								t-ef
RP.11 RP.33	no	2,6 l/min	50 mbar (good)	8 mm 16 mm	2 mm	Zinc die-cast	Modularly interlocking in the Multi-Fix series	"Cos
RPB.11	no	2,6 I/min	50 mbar (good)	8 mm	2 mm	Zinc die-cast	Modularly interlocking in the Multi-Fix series	
Standard series								
FDR.02	yes	2,0 I/min	5 mbar (very high)	4 mm	3,5 mm	Zinc die-cast	Moderate return flow/ very versatile	
FDR.07 B8 S	yes	0,5 I/min	5 mbar (very high)	8 mm	3 mm	Aluminium	High return flow	
FDR.03-31 FDR.03-32 FDR.03-33	yes	1,7 l/min	5 mbar (very high)	13 mm	5,5 mm	Zinc die-cast	High return flow/ standard up to −35 °C	lent"
FDRI.03-31 FDRI.03-32 FDRI.03-33	yes	1,7 I/min	5 mbar (very high)	13 mm	5,5 mm	Zinc die-cast	High return flow/ standard up to –35 °C	"Multi-talent"
FDRZ.03-31 B1 FDRZ.03-33 B1	yes	1,7 I/min	5 mbar (very high)	13 mm	5,5 mm	Zinc die-cast	High return flow/ standard up to −35°C	
FDRZ.03-32 B6 FDRZ.03-33 B6 FDRZ.03-33 B6 HZ	yes	1,7 I/min	5 mbar (very high)	13 mm	5,5 mm	Zinc die-cast	High return flow/ standard up to -35 °C	
FDR.04	yes	2,5 l/min	1 mbar (extremely high)	3 mm	6 mm oder 8 mm	Grivory GV 6H	High return flow/ lightweight differential pressure control gauge	
FDR.11	no	1,0 l/min	15 mbar (high)	3,5 mm	1,5 mm	Zinc die-cast	Low return flow/ robust design without pilot step/no brass	alist"
DRF.31 DRF.32 DRF.33	no	0 I/min	15 mbar (high)	4 mm	1,5 mm	Zinc die-cast	Low return flow/ robust design without pilot step/no internal air	"Specialist"
FDP.11	no	1,0 l/min	15 mbar (high)	3,5 mm	1,5 mm	Zinc die-cast	Low return flow/ robust design without pilot step/no brass	

FDR.07

The precise all-rounder

TECHNOLOGY HIGHLIGHT OF THE KNOCKS FDR.07:

This precision pressure regulator achieves good control characteristics through a pilot pre-control that activates the main regulator. This means:


Fluctuations in the inlet pressure have virtually no effect on the outlet pressure.

Futura series

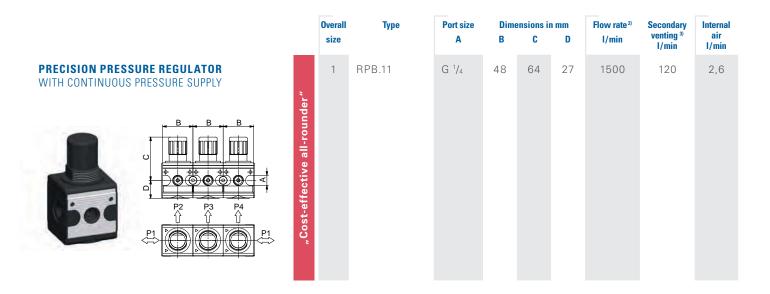
PRECISION PRESSURE REGULATOR

PRECISION PRESSURE REGULATOR WITH CONTINUOUS PRESSURE SUPPLY

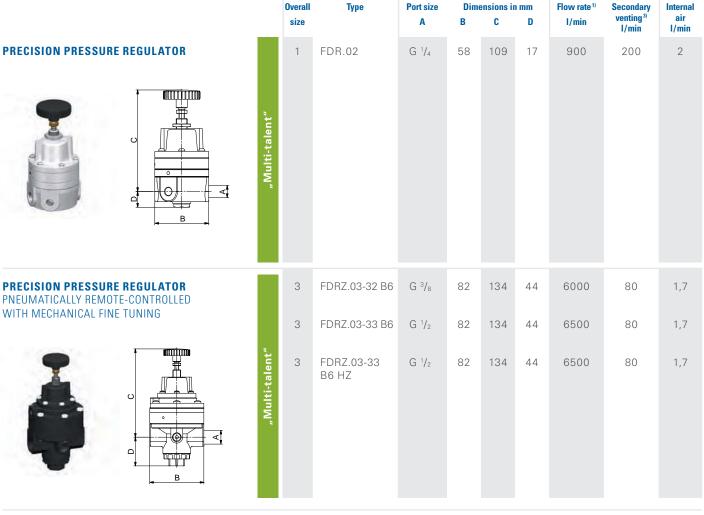
	Overall size	The state of the s			Flow rate 1)	Secondary venting ³⁾ I/min	Internal air I/min		
	1	KPRG-114	G ¹ / ₄	52	96	33	2200	120	2,6
der"	1	KPRG-138	G ³ / ₈	52	96	33	2700	120	2,6
roun	2	KPRG-238	G ³ / ₈	63	110	40	4300	120	2,6
ve all	2	KPRG-212	G ¹ / ₂	63	110	40	5000	120	2,6
"Cost-effective all-rounder"									
"Cost-									
	1	KPRB-114	G ¹ / ₄	52	96	33	2200	120	2,6
der"	1	KPRB-138	G ³ / ₈	52	96	33	2700	120	2,6
round	2	KPRB-238	G ³ / ₈	63	110	40	4300	120	2,6
ve all	2	KPRB-212	G ¹ / ₂	63	110	40	5000	120	2,6
ffecti									
"Cost-effective all-rounder"									
٥									

Multi-Fix series

Secondary **Overall** Type Port size Dimensions in mm Flow rate²⁾ Internal venting³ I/min air I/min size Α В C D I/min PRECISION PRESSURE REGULATOR RP.11 G 1/4 48 64 27 1500 120 2,6 ,Cost-effective all-rounder" G ¹/₂ RP.33 69 99 35 6000 120 2,6



 $^{2)}$ P1 = 8 bar; P2 = 6 bar; \triangle P2 = -1 bar.


 $^{3)}$ P1 = 6 bar; \triangle P2 = +1 bar (pressure increase).

Multi-Fix series

Standard series

 $^{^{2)}}$ P1 = 8 bar; P2 = 6 bar; \triangle P2 = -1 bar.

 $^{^{3)}}$ P1 = 6 bar; \triangle P2 = +1 bar (pressure increase).

Standard series

	Overall size	Туре	Port size	Dime B	ensions in C	mm D	Flow rate ²⁾	Secondary venting ³⁾ I/min	Internal air I/min
PRECISION PRESSURE REGULATOR White-talent,	1	FDR.07 B8 S	G 1/4	50	106	25	1250	450	0,5
PRECISION PRESSURE REGULATOR White-talent,	3 3	FDR.03-31 FDR.03-32 FDR.03-33	G ¹ / ₄ G ³ / ₈ G ¹ / ₂	82 82 82	160 160 160	44 44 44	3500 6000 6500	800 800 800	1,7 1,7 1,7
PRECISION PRESSURE REGULATOR PNEUMATICALLY REMOTE-CONTROLLED	3 3	FDRI.03-31 FDRI.03-32 FDRI.03-33	G ¹ / ₄ G ³ / ₈ G ¹ / ₂	82 82 82	64 64	44 44 44	2700 4300 6500	800 800 800	1,7 1,7 1,7
PRECISION PRESSURE REGULATOR PNEUMATICALLY REMOTE-CONTROLLED WITH MECHANICAL FINE TUNING	3	FDRZ.03-31 B1 FDRZ.03-33 B1		82	99	44	2700 6500	800	1,7

²⁾ P1 = 8 bar; P2 = 6 bar; \triangle P2 = -1 bar.

 $^{^{3)}}$ P1 = 6 bar; \triangle P2 = +1 bar (pressure increase).

Standard series

	Overall size	Туре	Port size	Dime B	ensions in C	mm D	Flow rate ²⁾	Secondary venting ³⁾ I/min	Internal air I/min
PRECISION PRESSURE REGULATOR	1	FDR.04	G ¹ / ₄	57	100	14	400	700	2,5
Specialist"									
PRECISION PRESSURE REGULATOR	1	FDR.11	G ¹ / ₄	60	114	32	750	100	1,0
Specialist"									
FINE PRESSURE REGULATOR	3	DRF.31	G ¹ / ₄	82	135	19	550	100	0
	3	DRF.32	G ³ / ₈	82	129	33	550	100	0
B C C C C C C C C C C C C C C C C C C C	3	DRF.33	G 1/2	82	129	33	550	100	0
PRECISION FILTER REGULATOR	1	FDP.11	G ¹ / ₄	60	108	96	750	100	1,0
Specialist"									

²⁾ P1 = 8 bar; P2 = 6 bar; \triangle P2 = -1 bar.

 $^{^{3)}}$ P1 = 6 bar; \triangle P2 = +1 bar (pressure increase).

3

+34 943 377 740

info@diprax.es

www.diprax.es